quinta-feira, 20 de janeiro de 2011

ENC: [ARTIGO TÉCNICO] Wireless HART

» Artigos Técnicos

» Blogs

» SYSTEM302 - Sistema de Controle de Processos

» Prêmios e Reconhecimentos

» Medição de Pressão e Vazão

» Medição de Temperatura

» Medição de Densidade

» Medição de Nível

» Posicionadores de Válvula

» Manutenção e Diagnóstico

» Suporte Técnico SMAR

» Junte-se a Nós!

» Suporte

» Notícias

» Treinamento

» Soluções de Indústrias

» Fale Conosco

» Pesquisar

» Unidade Móvel

» PATS

» SMAR Collection

 

Increva-se para o SMAR RSS Feed

 


Português | English | Español

 

 

» Próximos Treinamentos

FEVEREIRO / 2011

TC-107 - Treinamento em Produtos HART + 4-20mA

TC-120 - Treinamento em Controlador Digital Multi-Loop CD600

TC-121 - Treinamento em Controlador Programável LC700

TC-122 - Treinamento em Instrumentação Básica para Controle de Processos

MARÇO / 2011

TC-124- Treinamento em Instrumentação Aplicada a Caldeiras

TC-200- Treinamento em Tecnologia Foundation Fieldbus

TC-207- Treinamento em Tecnologia PROFIBUS

TC-231- Treinamento em Redes Industriais de Automação

 

WirelessHARTTM

 

 

Introdução

A necessidade de automação na indústria e nos mais diversos segmentos está associada, entre diversos aspectos, às possibilidades de aumentar a velocidade de processamento das informações, uma vez que as operações estão cada vez mais complexas e variáveis, necessitando de um grande número de controles e mecanismos de regulação para permitir decisões mais ágeis e, portanto, aumentar os níveis de produtividade e eficiência do processo produtivo dentro das premissas da excelência operacional.

A automação permite economias de energia, força de trabalho e matérias-primas, um melhor controle de qualidade do produto, maior utilização da planta, aumenta a produtividade e a segurança operacional. Em essência, a automação nas indústrias permite elevar os níveis de continuidade e de controle global do processo com maior eficiência, aproximar ao máximo a produção real à capacidade nominal da planta, ao reduzir ao mínimo possível as horas paradas, de manutenção corretiva e a falta de matéria-prima.

Além disso, com o advento dos sistemas de automação baseado em redes de campo e tecnologia digital, pode-se ter vários benefícios em termos de manutenção e aumentar a disponibilidade e segurança operacional. E ainda, a  automação extrapola os limites de chão de fábrica, ela continua após o produto acabado,  atingindo fronteiras mais abrangentes; a  automação do negócio.

A solução completa deve prover uma metodologia de gestão da indústria de forma transparente e garantir que todos os esforços sejam direcionados para se atingir a meta estabelecida, facilitando a tomada de decisão quando há mudanças relevantes ao desempenho dos indicadores ou um desvio em relação ao planejado.

Usuários e clientes então devem estar atentos na escolha e definição de um sistema de automação e controle, onde esta definição deve levar em conta vários critérios e que possa estar em sincronismo com o avanço tecnológico.

Quanto mais informação, melhor uma planta pode ser operada e sendo assim, mais produtos pode gerar e mais lucrativa pode ser. A informação digital e os sistemas verdadeiramente abertos permitem que se colete informações dos mais diversos tipos e finalidades de uma planta, de uma forma interoperável e como ninguém jamais imaginou e neste sentido, com a tecnologia Fieldbus (Foundation fieldbus, Profibus, HART(WirelessHARTTM), DeviceNet, Asi, etc) pode-se transformar preciosos bits e bytes em um relacionamento lucrativo e obter também um ganho qualitativo do sistema como um todo. Não basta apenas pensar em barramento de campo, deve-se estar atento aos benefícios gerais que um sistema de automação e controle possa proporcionar.

A revolução da comunicação industrial na tecnologia da automação está revelando um enorme potencial na otimização de sistemas de processo e tem feito uma importante contribuição na direção da melhoria no uso de recursos.
A tecnologia da informação tem sido determinante no desenvolvimento da tecnologia da automação alterando hierarquias e estruturas nos mais diversos ambientes industriais assim como setores, desde as indústrias de processo e manufatura. A capacidade de comunicação entre dispositivos e o uso de mecanismos padronizados, abertos e transparentes são componentes indispensáveis do conceito de automação de hoje. A comunicação vem se expandindo rapidamente no sentido horizontal nos níveis inferiores (field level), assim como no sentido vertical integrando todos os níveis hierárquicos. De acordo com as características da aplicação e do custo máximo a ser atingido, uma combinação gradual de diferentes sistemas de comunicação oferece as condições ideais de redes abertas em processos industriais.

Veremos a seguir, de forma breve, alguns detalhes sobre a redeWirelessHARTTM. Teremos uma série de artigos sobre esta tecnologia, mostrando em detalhes o protocolo, seus mecanismos e vantagens. Acompanhe em: http://www.smar.com/brasil2/artigostecnicos/

 

Redes Sem Fio

Nos últimos anos, a tecnologia de redes sem fio sofreu grandes avanços tecnológicos, o que hoje pode proporcionar: segurança, confiabilidade, estabilidade, auto-organização (mesh), baixo consumo, sistemas de gerenciamento de potência e baterias de longa vida.

Em termos de benefícios podemos citar, entre outros:

  • a redução de custos e simplificação das instalações
  • a redução de custos de manutenção, pela simplicidade das instalações
  • monitoração em locais de difícil acesso ou expostos a situações de riscos
  • escalabilidade
  • integridade física das instalações com uma menor probabilidade a danos mecânicos e elétricos (rompimentos de cabos, curto circuitos no barramento, ataques químicos, etc)

Hoje no mercado vemos várias redes proprietárias e também algumas padronizadas. Existem muitos protocolos relacionados com as camadas superiores da tecnologia (ZigBee, WirelessHARTTM, ISA SP100) e o protocolo IEEE 802.15.4 (2006) para as camadas inferiores. O protocolo IEEE 802.15.4 define as características da camada física e do controle de acesso ao meio para as LR-WPAN (Low-Rate Wireless Personal Area Network).

A padronização para redes sem fio mostra que, ainda que existam diferenças, as normas estão convergindo para a SP100 e WirelessHARTTM, da ISA e HCF(HART Foundation e que hoje vem sendo adotado como padrão para a Foundation Fieldbus e Profibus) respectivamente. Vamos comentar um pouco sobre o WirelessHARTTM.

 

WirelessHARTTM

A estrutura de uma rede WirelessHARTTM está representada no diagrama da figura 1, onde a comunicação de uma rede WirelessHARTTM é feita através de uma gateway.

Conseqüentemente, o gateway precisa ter a funcionalidade de um roteador de pacotes para um destino específico (instrumento da rede, aplicação hospedeira ou gerenciador da rede). O gateway usa o padrão de comandos HART para comunicar com os instrumentos na rede e aplicações hospedeiras (host applications).

Figura 1 - Estrutura de uma rede WirelessHARTTM

O WirelessHARTTM faz parte do HART 7, o primeiro padrão aberto de comunicação sem fio desenvolvido especificamente para atender as necessidades da indústria de processo.

Opera na freqüência de 2.4 GHz ISM usando o Time Division Multple Access (TDMA) para sincronizar a comunicação entre os vários equipamentos da rede. Toda a comunicação é realizada dentro de um slot de tempo de 10ms. Slots de tempo formam um superframe.

O WirelessHARTTM suporta chaveamento de canais (channel hopping) a fim de evitar interferências e reduzir os efeitos de esvanecimento multi-percurso (multi-path fadings).O protocolo HART foi elaborado com base na camada 7 do protocolo OSI.

Com a introdução da tecnologia sem fio ao HART tem-se duas novas camadas de Data Link: token-passing e TDMA. Ambas suportam a camada de aplicação HART.

Na figura 2 temos o primeiro controlador HSE (High Speed Ethernet) WirelessHARTTM. É um controlador da SMAR que traz ao mercado mais uma inovação. É um controlador com tecnologia digital aberta e integrável em sistemas baseados em HSE.

Uma rede de comunicação WirelessHARTTM é estruturada em malhas, onde cada sensor funciona como um "router" ou como um repetidor. Deste modo, o alcance de uma rede não depende apenas de um "gateway" central, o que permite a configuração de uma ampla estrutura de rede distribuída. É uma forma inteligente de se garantir que em uma situação de obstrução que possa causar a interrupção de um caminho de comunicação, o sistema remaneja e consiga rotas alternativas, aumentando e garantindo assim a disponibilidade da rede.

OWirelessHARTTM adota uma arquitetura utilizando uma rede "Mesh" baseado no IEEE 802.15.4  operando na faixa de 2,4 GHz. Os rádios utilizam o método de DSSS (espalhamento espectral com seqüenciamento direto) ou salto de canais FHSS (Spread Spectrum de salto de freqüências) para uma comunicação segura e confiável assim como comunicação sincronizada entre os dispositivos da rede utilizando TDMA (Time Division Multiple Acess).

As redes "Mesh" permitem que os nós da rede comuniquem entre si estabelecendo caminhos redundantes até a base, aumentando a confiabilidade, pois se um caminho esta bloqueado existem rotas alternativas para que a mensagem chegue ao seu destino final. Este tipo de rede também permite escalabilidade simplesmente adicionando mais nós ou repetidores na rede. Outra característica é que quanto maior a rede maior a confiabilidade porque mais caminhos alternativos são automaticamente criados.

Uma redeWirelessHARTTM possui três dispositivos principais:

  • Wireless Field devices: equipamentos de campo
  • Gateways: permitem a comunicação entre os equipamentos de campo e as aplicações de controle
  • Network Manager: responsável pela configuração da rede, gerenciamento da comunicação entre os dispositivos, rotas de comunicação e monitoramento do estado da
    rede.  O Network Manager pode ser integrado em um gateway, aplicação no host ou em um controlador de processo.


Figura 2 - Sistema Wireless com o DF100 (Controlador HSE- WirelessHARTTM).

 

Figura 3 - SYSTEM302, sistema aberto baseado em redes digitais.

Conclusão

O fator tecnológico e a inovação tecnológica são responsáveis pelo rompimento e/ou aperfeiçoamento das técnicas e processos de medição e controle. Pode, desta forma, trazer ganhos em termos de competitividade. O rompimento com a tecnologia convencional será uma questão de tempo e com isto serão ampliadas as possibilidades de sucesso com a inovação demandada pelo mercado, neste caso sistemas de automação verdadeiramente abertos (vide figura 3, www.system302.com.br), com tecnologias digitais, baseado em redes industriais, conectividade Wireless e com várias vantagens comparadas aos convencionais SDCDs.

A mudança do controle de processo da tecnologia 4-20mA para as redes digitais e sistemas abertos já se encontra num estágio de maturidade tecnológica e usuários colhendo seus benefícios. Essa mudança é encarada como um processo natural demandado pelos novos requisitos de qualidade, confiabilidade e segurança do mercado. A sua utilização traz uma vantagem competitiva, no sentido que essa nova tecnologia traz aumentos de produtividade pela redução das variabilidades dos processos e redução dos tempos de indisponibilidade das malhas de controle.
Aguardem os próximos artigos sobre o WirelessHARTTM.

 

Referências:

 

 

 

 

 

 

 

 

ENC: LD1.0 - Transmissor de Pressão com sensor capacitivo e leitura de pressão digital - Solução econômica e confiável

» Artigos Técnicos

» Blogs

» SYSTEM302 - Sistema de Controle de Processos

» Prêmios e Reconhecimentos

» Medição de Pressão e Vazão

» Medição de Temperatura

» Medição de Densidade

» Medição de Nível

» Posicionadores de Válvula

» Manutenção e Diagnóstico

» Suporte Técnico SMAR

» Junte-se a Nós!

» Suporte

» Notícias

» Treinamento

» Soluções de Indústrias

» Fale Conosco

» Pesquisar

» Unidade Móvel

» PATS

» SMAR Collection

 

Increva-se para o SMAR RSS Feed

 


Português | English | Español

 

 

» Próximos Treinamentos

FEVEREIRO / 2011

TC-107 - Treinamento em Produtos HART® + 4-20mA

TC-120 - Treinamento em Controlador Digital Multi-Loop CD600

TC-121 - Treinamento em Controlador Programável LC700

TC-122 - Treinamento em Instrumentação Básica para Controle de Processos

MARÇO / 2011

TC-124- Treinamento em Instrumentação Aplicada a Caldeiras

TC-200- Treinamento em Tecnologia Foundation Fieldbus

TC-207- Treinamento em Tecnologia PROFIBUS

TC-231- Treinamento em Redes Industriais de Automação

 

LD1.0 - Transmissor de Pressão com sensor capacitivo e leitura de pressão digital - Solução econômica e confiável

 

 

Introdução

A medição e controle de pressão é a variável de processo mais usada na indústria de controle de processos nos seus mais diversos segmentos. Além disso, através da pressão é facilmente possível inferir uma série de outras variáveis de processo, tais como nível, volume, vazão e densidade.

Comentaremos neste breve artigo alguns detalhes sobre o LD1.0, um transmissor de pressão do tipo econômico, com sensor capacitivo e que foi projetado para medições de pressão manométrica e absoluta de líquidos, gases e vapores em muitas aplicações industriais. O LD1.0 possui leitura direta e totalmente digital de pressão, e é o mais robusto do mercado em sua categoria.

 

Sensores Capacitivos

Estes são os sensores mais confiáveis e que já foram usados em milhões de aplicações. São baseados em transdutores onde a pressão aplicada a diafragmas sensores faz com que se tenha uma variação da capacitância entre os mesmos e um diafragma central, por exemplo.  Esta variação de capacitância tipicamente é usada para variar a  freqüência de um oscilador ou usada como elemento em uma ponte de capacitores. Esta variação de capacitância pode ser usada para variar a freqüência de um oscilador. Esta freqüência pode ser medida diretamente pela CPU e convertida em Pressão. Neste caso não existe conversão A/D o que contribui na exatidão e eliminação de drifts embutidos nas conversões analógicas/digitais. Vale a pena lembrar que este princípio de leitura totalmente digital é utilizado pela SMAR desde a década de 80 (a SMAR, é a única empresa brasileira e uma das poucas no mundo a fabricar este tipo de sensores). Os sensores capacitivos possuem respostas lineares e praticamente insensíveis a variações de temperatura, sendo os mais indicados em instrumentação e controle de processos, já que possuem excelentes performance em estabilidade, em  temperatura e pressão estática. Algumas de suas vantagens:

  • Ideais para aplicações de baixa e alta pressão.
  • Minimizam o Erro Total Provável (ETP) e conseqüentemente a variabilidade do processo.
  • Ideais para aplicações de vazão.
  • Por sua resposta linear, permite alta rangeabilidade com exatidão.


Figura 1 - LD1.0 com sensor capacitivo

Mantendo o sinal totalmente digital desde o sensor até a aquisição e leitura pela CPU permite infinitamente maior qualidade dos sinais, ficando livre de derivas térmicas e degradações associadas aos métodos analógicos e que são usados pela maioria dos fabricantes de transmissores de pressão. A medição digital, portanto, reduz o Erro Total Provável (ETP).

Este princípio de medição direta e digital é usado em todos os transmissores SMAR da Série 300 e Série 400 (LD301, LD302, LD303, LD291, LD292, LD293 e LD400) e o LD1.0 (Sensor Econômico).  Desde 1988, quando a SMAR introduziu no mercado o LD300, este princípio já era usado e com isto a SMAR se tornou a primeira empresa em nível mundial a ter um sensor de pressão com leitura direta e totalmente digital, garantindo medições com altas exatidões e proporcionando menores variabilidades de processos.

 

Como funciona o sensor capacitivo da SMAR?

O sensor capacitivo é composto por uma parte mecânica que é  a chamada célula capacitiva e uma parte eletrônica que é basicamente um circuito ressonante.Veja a figura 2.



Figura 2 - Sensor de Pressão Capacitivo SMAR

No centro da célula está o diafragma sensor. Este diafragma flexiona-se em função da diferença de pressões aplicadas ao lado direito e esquerdo da célula.

Essas pressões são aplicadas diretamente aos diafragmas isoladores, os quais fornecem resistência contra corrosão provocada por fluidos de processos. A pressão é diretamente transmitida ao diafragma sensor através do fluido de enchimento, provocando a sua deflexão.

O diafragma sensor é um eletrodo móvel. As duas superfícies metalizadas são eletrodos fixos. A deflexão do diafragma sensor é percebida através da variação da capacitância entre os dois eletrodos fixos e o móvel.

Uma vez que o movimento do diafragma sensor é mínimo, a histerese é praticamente nula. O projeto do sensor, com tecnologia de ponta da SMAR, garante a linearidade e repetibilidade, tornando o sensor altamente confiável em termos de leitura e exatidão.


Figura 3 - Exemplo de um Transmissor Capacitivo SMAR: LD1.0 (HART®/4-20mA)

O circuito eletrônico ressonante lê a variação da capacitância entre a placa móvel e a fixa. A CPU condiciona o sinal e comunica de acordo com o protocolo do transmissor. Como não há conversão A/D, os erros e desvios são eliminados
durante a conversão. O sensor de temperatura fornece a compensação da temperatura que, combinada com a precisão do sensor de pressão, resulta em uma alta exatidão e rangeabilidade para as diversas séries e modelos de transmissores SMAR.

A variável de processo, assim como a monitoração e a informação de diagnóstico, é fornecida através do protocolo de comunicação digital HART®.

 

LD1.0 - O transmissor de pressão econômico capacitivo SMAR

O transmissor de pressão econômico capacitivo SMAR LD1.0 foi projetado para medições de pressão manométrica e absoluta de líquidos, gases e vapores em muitas aplicações industriais. Este transmissor de baixo custo é o único da categoria no mercado a utilizar a tecnologia da célula capacitiva como sensor de pressão fazendo a leitura de pressão de forma completamente digital. Por ser um sensor de alta confiabilidade e robustez é utilizado em mais de 80% das medições de pressão de alto desempenho em todo o mundo, pois proporciona excelente precisão, repetibilidade e linearidade para a medição. As características de produção e montagem do Transmissor de Pressão LD1.0 proporcionam resistência a vibração, choque, grandes variações de temperatura, imunidade a interferência eletromagnética e outras condições ambientais extremas que são típicas de aplicações industriais.

O alto desempenho e confiabilidade deste transmissor, além de longa durabilidade são assegurados pela utilização de materiais nobres como o 17-4PH e o AISI 316L no invólucro totalmente soldado à célula de medição que elimina a necessidade de selagem com o'ring que pode deteriorar-se com o tempo. A opção da utilização do Hastelloy C276 em todas as partes molhadas proporcionam a utilização deste transmissor em muitos processos que contenham sais e ácidos corrosivos. O modelo com a conexão ao processo selada propicia a utilização do LD1.0 em processos incrustantes e com sólidos em suspensão. 

O LD1.0 oferece várias faixas de medição de pressão até 150 bar com uma exatidão de   ± 0,2%, conexão elétrica DIN 43650 com alimentação de 24 Vdc a 2 fios e protetor de transiente embutido, sem custo adicional. Várias opções de conexão ao processo são disponíveis.

O sinal de saída deste transmissor é uma corrente de 4 a 20 mA conforme a norma NAMUR NE43, que fornece o diagnóstico de corrente de falha e de saturação.

O LD1.0 utiliza o protocolo HART® V5 com recursos EDDL para comunicação remota e pode ser usado para configuração e monitoração das variáveis. Desta forma através de um configurador HART®, como o HPC 401 SMAR, o CONF 401 SMAR ou ferramentas FDT/DTM pode-se: configurar a unidade de medição, alterar os limites de medição (4 - 20 mA), fazer o ajuste de zero e span com e sem referência, simular a corrente de saída, ajustar o damping, fazer a monitoração de até quatro variáveis HART® como: PV, PV%, Temperatura, Saída de Corrente, etc.

Além da configuração remota é possível fazer-se a calibração de zero e span com pressão aplicada através do ajuste local utilizando-se uma chave magnética com atuação em um sensor Hall.

LD1.0 - Aplicações
  • Medição e Controle de Processos Industriais;
  • Sistemas Hidráulicos e Pneumáticos;
  • Bombas e Compressores;
  • Máquinas e Ferramentas de Usinagem;
  • Plantas de Produção de Polietilenos;
  • Etc.
LD1.0 Principais Características
  • Exatidão de ± 0.2%;
  • Sinal de Saída 4 - 20 mA conforme NAMUR NE43;
  • Protocolo de Comunicação HART® V5;
  • Várias Opções de Conexão ao Processo;
  • Conexão Elétrica DIN 43650 - Sem Polaridade;
  • Várias Faixas de Pressão até 150 bar;
  • Rangeabilidade de 50:1;
  • Sobrepressão de 70 bar (Faixa 1), 138 bar (Faixas 2, 3
  • e 4) e 310 bar (Faixa 5);
  • Temperatura de Operação de - 40 à 100 ºC;
  • Tempo de resposta de 200 ms;
  • Ajuste Local de Zero e Span com Chave Magnética;
  • Intrinsecamente Seguro - Certificação Pendente;
  • Proteção da Configuração por Senha;
  • Material do Corpo 17-4PH / AISI316L;
  • Material do Diafragma Hastelloy C276;
  • Fluido de Enchimento em Silicone;
  • Leve e Compacto;
  • Configuração via HPC401, CONF401 e outros;
  • Suporta FDT/DTM e DD/EDDL;
  • Grau de Proteção IP65.

 

 

LD1.0 - Simplicidade até na especificação

O LD1.0 possui um código muito fácil, tornado sua especificação pelo usuário muito simples.Veja a figura a abaixo:

Figura 4 - Código de Pedido do LD1.0

 

LD1.0 - Fácil configuração

O LD1.0 possui comunicação HART® e pode facilmente ser configurado por qualquer ferramenta HART® que trabalhe com DD, EDDL e DTM.

O Transmissor Inteligente de Pressão LD1.0 é um instrumento digital que oferece as mais avançadas características que um aparelho de medição pode oferecer. A disponibilidade de um protocolo de comunicação digital (HART®) permite que o instrumento possa ser conectado a um computador externo e ser configurado de forma bastante simples e completa. Estes computadores que se conectam ao transmissores são chamados de HOST e eles podem ser tanto um Mestre Primário ou Secundário.

Assim, embora o protocolo HART® seja do tipo mestre escravo, na realidade, ele pode conviver com até dois mestres em um barramento. Geralmente, o HOST Primário é usado no papel de um Supervisório e o HOST Secundário, no papel de Configurador.

Quanto aos transmissores, eles podem estar conectados em uma rede do tipo ponto a ponto ou multiponto. Em rede ponto a ponto, o equipamento deverá estar com o seu endereço em "0", para que a corrente de saída seja modulada em 4 a 20 mA, conforme a medida efetuada. Em rede multiponto, se o mecanismo de reconhecimento dos dispositivos for via endereço, os transmissores deverão estar configurados com endereço de rede variando de "1" a "15". Neste caso, a corrente de saída dos transmissores é mantida constante, consumindo 4 mA cada um. Se o mecanismo de reconhecimento for via Tag, os transmissores poderão estar com os seus endereços em "0" e continuar controlando a sua corrente de saída, mesmo em configuração multiponto.

No caso do LD1.0, o endereço "0" do HART® faz com que o LD1.0 controle a sua saída de corrente e os endereços "1" a "15" colocam o LD1.0 em modo multiponto sem controle da corrente de saída.

O LD1.0 apresenta um conjunto bastante abrangente de Comandos HART® que permite acessar qualquer funcionalidade nele implementado. Estes comandos obedecem as especificações do protocolo HART® e eles estão agrupados em Comandos Universais, Comandos de Práticas Comum e Comandos Específicos.

A seguir vemos na figura 5, uma tela de configuração do CONF401, configurador HART® SMAR:


Figura 5 - Tela de configuração do CONF401

Além disso, o LD1.0 pode ser facilmente configurado usando o HPC401, o programador de mão HART® da SMAR. Veja a figura 6. Para mais detalhes veja:

http://www.smar.com/newsletter/marketing/index65.html


Figura 6 - HPC401 - Configurador Portátil HART em plataforma Palm

 

LD1.0 - Ajuste Local

Para a disponibilidade da função de ajuste local é necessário um multímetro inserido em série com a alimentação do equipamento na escala de corrente ou a utilização de um acessório (veja figura 9) que foi projetado para a ligação do equipamento ao multímetro sem a necessidade de desconectar os cabos de alimentação.

O transmissor possui dois orifícios, que permitem acionar os sensores da placa principal com a introdução do cabo da chave magnética (veja Figura 7).


Figura 7 - Ajuste Local de Zero e Span e Chave de Ajuste local

Os orifícios são marcados com Z (Zero) e S (Span).

 

Ajuste Local Simples

O LD1.0permite somente a calibração dos valores inferior e superior nesta configuração.

Calibração do Zero e do SPAN

O LD1.0calibra de forma bastante simples o ajuste do Zero e do Span de acordo com a sua faixa de trabalho. Como este equipamento não possui display, será necessário o uso de um multímetro para o acompanhamento da calibração.

A calibração de zero com referência deve ser feita do seguinte modo:

  • Aplique a pressão correspondente ao valor inferior;
  • Espere a pressão estabilizar;
  • Insira a chave magnética em (Z) (veja Figura 7);
  • Espere aproximadamente 2 segundos
  • Em seguida, insira a chave magnética em (S);
  • Espere aproximadamente 2 segundos;
  • Observe no multímetro que a corrente indicada é de 8 mA (veja Figura 8a);
  • Insira novamente a chave magnética em (Z) e, logo o transmissor passa a indicar 4 mA (veja Figura 8b);
  • Remova a chave magnética.


Figura 8a - Configuração do Zero

 


Figura 8b - Configuração do Zero

A calibração de zero com referência mantém o span inalterado. Para alterar o span, o seguinte procedimento deve ser executado:

  • Aplique a pressão de valor superior;
  • Espere a pressão estabilizar;
  • Insira a chave magnética em (S);
  • Espere aproximadamente 2 segundos;
  • Em seguida, insira a chave magnética em (Z);
  • Espere aproximadamente 2 segundos;
  • Observe no multímetro que a corrente indicada é de 16 mA (veja Figura 8.c);
  • Insira novamente a chave magnética em (S) e, logo o transmissor passa a indicar 20 mA (veja Figura 8.d);
  • Remova a chave magnética.


Figura 8c - Configuração do Span



Figura 8d - Configuração do Span

 

Figura 9 - Conector para calibração via ajuste local

Quando o ajuste de zero é realizado, ocorre uma supressão/elevação de zero e um novo valor superior (URV) é calculado de acordo com o span vigente. Se o URV resultante ultrapassar o valor limite superior (URL), o URV será limitado ao valor URL e o span será afetado automaticamente.

 

Exemplo de aplicação em Usinas de Acúçar e Etanol

As fotos a seguir mostram uma aplicação com LD1.0 na medição de pressão de óleo nos turbo-geradores.

 



Figura 10 -  LD1.0 na medição de pressão de óleo nos turbo-geradores - Usina Santa Tereza.

 

Conclusão

Os transmissores SMAR foram desenvolvidos para ser uma solução robusta e altamente confiável para a medição de pressão. Apresenta grande flexibilidade nas aplicações devido ao uso de um sensor capacitivo que mantém o sinal digital desde a leitura do sensor até a saída do transmissor, resultando em uma resolução alta e eficaz.

Com o LD1.0, usuários podem economicamente aplicar em seus processos um transmissor robusto e confiável, diferente dos transmissores descartáveis em sua categoria.É muito simples e fácil.
Para mais detalhes consulte: http://www.smar.com/brasil2/products/ld10.asp

 

Referências

 

 

 

 

 

 

 

 

 

Powered By Blogger